Comment on 'Solutions of the Yang-Baxter equation for isotropic quantum spin chains'

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 275033
(http://iopscience.iop.org/0305-4470/27/14/028)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at $21: 36$

Please note that terms and conditions apply.

COMMENT

Comment on 'Solutions of the Yang-Baxter equation for isotropic quantum spin chains'

M T Batchelor and C M Yung
Department of Mathematics, School of Mathematical Sciences, Australian National University, Canberra ACT 0200, Australia

Received 25 Aprit 1994

Abstract

We comment on a recent paper by Kennedy (J. Phys. A: Math. Gen. 25 (1992) 2809) in which a systematic search for integrable spin- S su(2)-invariant quantum chains for $S \leqslant 6$ revealed four spin- S families of integrable chains along with an additional integrable chain at $S=3$. We identify these $s u(2)$-invariant chains with known \mathcal{G}-invariant R-matrices, where \mathcal{G} is a simple Lie algebra, and give arguments that Kennedy's results may well constitute the complete classification of integrable spin- $S s u(2)$-invariant chains.

In a recent paper [1] Kennedy initiated a systematic search for spin-S su(2)-invariant quantum chains satisfying Reshetikhin's condition [1,2], which is necessary for integrability. Four known models for generic S were presented, together with the corresponding R matrices satisfying the Yang-Baxter equation. These four families of quantum chains were located in the numerical analysis performed for spins $S \leqslant 6$, together with an extra solution at $S=3$ for which the related R-matrix was also given.

In this comment we discuss the relationship of these $s u(2)$-invariant spin chains to known \mathcal{G}-invariant R-matrices, where \mathcal{G} is a simple Lie algebra. This aspect was briefly considered in [1]. Indeed, we will show that the identification made there of one 'family' of quantum chains with the $s o(n)$-invariant R-matrices of Zamolodchikov and Zamolodchikov [3] is only half correct; the correct identification being that of the spin- S member for S integer with the $s o(2 S+1) R$-matrix and the spin- S member for S half-odd-integer with the $s p(2 S+1) R$-matrix.

We will adopt the root labelling convention of Dynkin [4], and for \mathcal{G} a simple Lie algebra of rank n denote the fundamental weights by $\Lambda_{1}, \ldots, \Lambda_{n}$. Let π_{Λ} be an irreducible representation (irrep) of \mathcal{G} with highest weight Λ on the vector space V_{Λ}. The R-matrix $\check{R}^{\Lambda, \Lambda}(u) \in \operatorname{End}\left(V_{\Lambda} \otimes V_{A}\right)$ is said to be \mathcal{G}-invariant if

$$
\left[\check{R}^{\Lambda, \Lambda}(u), \pi_{\Lambda}(\mathcal{G}) \otimes 1+1 \otimes \pi_{\Lambda}(\mathcal{G})\right]=0
$$

For a given pair $(\mathcal{G}, \Lambda$) the imposition of such a condition sometimes (but not always [5,6]) allows the Yang-Baxter equation for $\breve{R}^{\Lambda, \Lambda}(u)$ to be solved. In particular, for any \mathcal{G} (except E_{8}) and Λ corresponding to the lowest dimensional irreps the solutions are known explicitly. In this language, $s u(2)$-invariance in the sense of [1] corresponds to requiring $\mathcal{G}=s u(2)$ and $\Lambda=2 S \Lambda_{1}$. Note that we have left out the label for \mathcal{G} in $\check{R}^{\Lambda, \Lambda}(u)$, which is a usual practice. More seriously, the results of [1] show that, in general, an extra label is required to take into account the possibility of more than one solution for given (\mathcal{G}, Λ). Accordingly, we will call the four families of $s u(2)$-invariant solutions in [1] $\breve{R}_{i}^{2 S \Lambda_{i}, 2 S \Lambda_{1}}$ where $i \in\{\mathrm{I}, \mathrm{II}, \mathrm{III}, \mathrm{IV}\}$.

An R-matrix $\check{R}^{\Lambda, \Lambda}(u)$ corresponding to (\mathcal{G}, Λ) has the spectral decomposition $\check{R}^{\Lambda, \Lambda}(u)=\sum_{\lambda \in \mathcal{D}} c_{\lambda}(u) P_{\lambda}$, where P_{λ} is a projector onto the irreducible subspace V_{λ} occurring in the Clebsch-Gordan decomposition $V_{A} \otimes V_{\Lambda}=\oplus_{\lambda \in \mathcal{D}} V_{\lambda}$. Such an R-matrix turns out also to be $s u(2)$-invariant in the sense of [1] if the following condition is satisfied:
(a) The space V_{Λ} can be identified with a space $V_{2 S \Lambda_{1}}$ on which $s u(2)$ is represented irreducibly.

We are unable to give a complete classification of all pairs (\mathcal{G}, Λ) such that this condition holds. However, by an examination of the tables of branching rules [4] for simple Lie algebras of rank $\leqslant 8$ and representations of dimension <5000, we have found the following solutions:
(i) $\left(A_{n}=s u(n+1), \Lambda_{1}\right)$ for $n \geqslant 1$,
(ii) $\left(B_{n}=\operatorname{so}(2 n+1), \Lambda_{1}\right)$ for $n \geqslant 3$,
(iii) $\left(C_{n}=\operatorname{sp}(2 n), \Lambda_{1}\right)$ for $n \geqslant 2$, and
(iv) $\left(G_{2}, \Lambda_{2}, \Lambda_{2}\right)$.

Before proceeding further, we rewrite the $s u(2)$-invariant R-matrices of [1] in spectral form, using the relation $\mathcal{P}=(-1)^{2 S} \sum_{i=0}^{2 S}(-1)^{i} P^{(i)}$ between the permutation operator \mathcal{P} (E in the notation of [1]) and projection operators $P^{(j)} \equiv P_{2 j \Lambda_{1}}$ onto $s u(2)$-irreps in $V_{2 S \Lambda_{\mathrm{t}}} \otimes V_{2 S \Lambda_{1}}$. The results are :

$$
\begin{align*}
\check{R}_{\mathrm{I}}^{2 S \Lambda_{1}, 2 S \Lambda_{1}}(u) & =(1-u) \sum_{i \text { even }} P^{(i)}+(1+u) \sum_{i \text { odd }} P^{(i)} \tag{1}\\
\check{R}_{\Pi \mathrm{a}}^{2 S \Lambda_{1}, 2 S \Lambda_{1}}(u) & =(1-u)\left(1-\left(S-\frac{1}{2}\right) u\right) P^{(0)}+(1+u)\left(1-\left(S-\frac{1}{2}\right) u\right) \sum_{i \text { odd }} P^{(i)} \\
& +(1+u)\left(1+\left(S-\frac{1}{2}\right) u\right) \sum_{i \text { even } \neq 0} P^{(i)} \quad(S \text { integer }) \tag{2}\\
& +(1+u)\left(1-\left(S+\frac{3}{2}\right) u\right) \sum_{i \text { even } \neq 0} P^{(i)} \quad(S \text { half odd integer }) \\
\check{R}_{\Pi b}^{2 S \Lambda_{1}, 2 S \Lambda_{1}}(u) & =(1-u)\left(1+\left(S+\frac{3}{2}\right) u\right) P^{(0)}+(1+u)\left(1+\left(S+\frac{3}{2}\right) u\right) \sum_{i \text { odd }} P^{(i)} \tag{3}\\
\check{R}_{\mathrm{RI}}^{2 S \Lambda_{i}, 2 S \Lambda_{1}}(u) & =\sum_{k=0}^{2 S}\left(\prod_{j=1}^{k}(j-u) \prod_{j=k+1}^{2 S}(j+u)\right) P^{(k)} \quad \tag{4}\\
\check{R}_{\mathrm{IV}}^{2 S \Lambda_{1}, 2 S \Lambda_{1}}(u) & =1+\frac{a-a e^{u}}{e^{u}-a^{2}}(2 S+1) P^{(0)} \quad a+\frac{1}{a}=2 S+1 \quad(S \geqslant 1) . \tag{5}
\end{align*}
$$

Here, it is understood that $\sum_{i \text { even }}$ is short for $\sum_{i=0}^{2 S}(i$ even $)$ etc. The R-matrices labelled I, II, III and IV correspond, respectively, to the solutions (4), (6), (9) and (10) in [1]. We have divided the type II solutions into IIa and IIb for reasons which will soon be clear. The extra solution for $S=3$ ((13) in [1]) can be written as

$$
\begin{align*}
\check{R}_{V}^{6 \Lambda_{1}, 6 \Lambda_{1}}(u)= & (1+6 u)(1+u)\left(1-\frac{3}{2} u\right) P^{(0)}+(1-6 u)(1-u)\left(1+\frac{3}{2} u\right) P^{(3)} \\
& +(1-6 u)(1-u)\left(1-\frac{3}{2} u\right)\left(P^{(2)}+P^{(4)}+P^{(6)}\right) \\
& +(1+6 u)(1-u)\left(1-\frac{3}{2} u\right)\left(P^{(1)}+P^{(5)}\right) . \tag{6}
\end{align*}
$$

The solutions of the Yang-Baxter equation corresponding to the pairs (\mathcal{G}, Λ) written out above which satisfy condition (a) can be found in $[7,8]$ as scattering matrices in spectral
form, which can be converted to regular R-matrices (satisfying $\left.\breve{R}^{\Lambda, \Lambda}(0)=1\right) \dagger$ For the $s u(k)$ and $s o(2 k+1)$ series, we write down the results only for generic k; for the special lowdimensional cases $s u(2)$, so(3), and so(5), the corresponding R-matrices have similar forms to the generic rank cases but the labelling of the invariant subspaces is slightly different. We now examine each case (i)-(iv) more closely. In the tables of [4] only branching rules corresponding to maximal embeddings [9] are given; therefore in arriving at the list (i)-(iv) we have examined all chains of maximal embeddings $\mathcal{G} \supset \cdots \supset A_{1}$. Consideration of such chains is also needed in general to relate the corresponding R-matrices to those in (1)-(5).

In case (i) the R-matrices are given by

$$
\begin{equation*}
\check{R}^{\Lambda_{1}, \Lambda_{1}}(u)=(1-u) P_{\Lambda_{2}}+(1+u) P_{2 \Lambda_{1}} . \tag{7}
\end{equation*}
$$

The required embeddings of A_{1} in A_{n} are $A_{2 k} \supset B_{k} \supset A_{1}$ and $A_{2 k-1} \supset C_{k} \supset A_{1}$, except possibly when an exceptional algebra 'gets in the way', e.g. $A_{6} \supset B_{3} \supset G_{2} \supset A_{1}$. In this latter case the relevant branching rules are $\Lambda_{1} \downarrow$ (3), $\Lambda_{2} \downarrow$ (1) + (3) + (5), and $2 \Lambda_{1} \downarrow(0)+(2)+(4)+(6)$, where $s u(2)$-irreps are labelled by their spin. Hence, the corresponding R-matrix can be identified with the $S=3$ case of (1). Likewise, examination of the other cases will show that the R-matrices (7) are identified with those of (1). Of course, one can arrive at the same conclusion by noting that both series of R-matrices can be expressed in terms of the permutation operator \mathcal{P}. The approach taken here shows its utility when we consider the other Lie algebras.

In case (ii) the R-matrices are

$$
\begin{align*}
\check{R}^{\Lambda_{1}, \Lambda_{1}}(u)= & (1+u)\left(1+\left(n-\frac{1}{2}\right) u\right) P_{2 \Lambda_{1}}+(1+u)\left(1-\left(n-\frac{1}{2}\right) u\right) P_{\Lambda_{2}} \\
& +(1-u)\left(1-\left(n-\frac{1}{2}\right) u\right) P_{0} . \tag{8}
\end{align*}
$$

The required embedding is generically $B_{n} \supset A_{1}$. For example, we have $B_{4} \supset A_{1}$, with the relevant branching rules $\Lambda_{1} \downarrow$ (4), $\Lambda_{2} \downarrow$ (1) $+(3)+(5)+(7)$, and $2 \Lambda_{1} \downarrow(2)+(4)+(6)+(8)$. The corresponding R-matrix is identified with the $S=4$ member of (2). Likewise, all the other so($2 n+1$)-invariant R-matrices (8) can be identified with members of the series (2).

In case (iii) the R-matrices are

$$
\begin{align*}
\check{R}^{\Lambda_{1}, \Lambda_{1}}(u)= & (1+u)(1+(n+1) u) P_{2 \Lambda_{1}}+(1+u)(1-(n+1) u) P_{\Lambda_{2}} \\
& +(1-u)(1+(n+1) u) P_{0} . \tag{9}
\end{align*}
$$

The required embedding is generically $C_{n} \supset A_{1}$. For example, we have $C_{3} \supset A_{1}$, with the relevant branching rules $\Lambda_{1} \downarrow(5 / 2), \Lambda_{2} \downarrow(2)+(4)$, and $2 \Lambda_{1} \downarrow(1)+(3)+(5)$. The corresponding R-matrix is identified with the $S=5 / 2$ member of (3). Likewise, all the other $s p(2 n)$-invariant R-matrices (9) can be identified with members of (3). This corrects a mis-identification in [1].

In case (iv) the R-matrix is

$$
\begin{align*}
\check{R}^{\mathrm{A}_{2}, \Lambda_{2}}(u)= & (1-6 u)(1-u)\left(1-\frac{3}{2} u\right) P_{2 \Lambda_{2}}+(1+6 u)(1-u)\left(1-\frac{3}{2} u\right) P_{\Lambda_{1}} \\
& +(1+6 u)(1+u)\left(1-\frac{3}{2} u\right) P_{0}+(1-6 u)(1-u)\left(1+\frac{3}{2} u\right) P_{\Lambda_{2}} . \tag{10}
\end{align*}
$$

The maximal embedding is $G_{2} \supset A_{1}$ and the relevant branching rules are $\Lambda_{2} \downarrow$ (3), $2 \Lambda_{2} \downarrow(2)+(4)+(6)$ and $\Lambda_{1} \downarrow(1)+(5)$. Therefore the G_{2}-invariant R-matrix (10) is identified with the extra $S=3$ solution (6).

To summarise, we have the following identification of $s u(2)$-invariant spin- $S R$-matrices with R-matrices invariant under a larger algebra and acting on tensor products of lowest

[^0]dimensional irreps:
\[

$$
\begin{array}{lll}
\check{R}_{1}^{2 S \Lambda_{1}, 2 S \Lambda_{1}}[s u(2)] & =\check{R}^{\Lambda_{1}, \Lambda_{1}}[s u(2 S+1)] & \\
\check{R}_{\Pi \mathrm{I}}^{2 S \Lambda_{1}, 2 s \Lambda_{1}}[s u(2)] & =\check{R}^{\Lambda_{1}, \Lambda_{1}}[s o(2 S+1)] & \\
(S \text { integer }) \\
\check{R}_{\Pi b}^{2 S \Lambda_{1}, 2 S \Lambda_{1}}[s u(2)]=\check{R}^{\Lambda_{1}, \Lambda_{1}}[s p(2 S+1)] & & (S \text { half odd integer }) \\
\check{R}_{V}^{6 \Lambda_{1}, 6 \Lambda_{1}}[s u(2)] & =\check{R}^{\Lambda_{2}, \Lambda_{2}}\left[G_{2}\right] & \\
(S=3) .
\end{array}
$$
\]

The R-matrices $\check{R}_{\text {III }}^{2 S \Lambda_{1}, 2 S \Lambda_{\mathrm{t}}}[s u(2)]$ are already in the 'proper' Lie algebraic settingcorresponding to the trivial embedding of A_{1} in itself. Finally, $\breve{R}_{\mathrm{TV}}^{2 S \Lambda_{1}, 2 S \Lambda_{1}}[s u(2)]$ is not rational in u, unlike the others under consideration, and is in a class of its own-being related to the Temperley-Lieb algebra. We have thus 'accounted for' all the R-matrices in [1].

We conclude with a few remarks on whether there are $s u(2)$-invariant R-matrices beyond those in [1]. Firstly, we note that it is possible to construct R-matrices by way of the Temperley-Lieb algebra starting from a pair (\mathcal{G}, Λ) for which $V_{\Lambda} \otimes V_{\mathrm{A}}$ is multiplicity-free and contains the trivial representation V_{0} [10]. However, if such an R-matrix turns out to be $s u$ (2)-invariant-i.e. condition (a) is satisfied-then it will necessarily be equivalent to (5). Secondly, an inspection of the tables of [4] will convince the reader that condition (a) holds very rarely. In particular, the R-matrices associated with the fundamental representations of D_{n}, E_{6}, E_{7} and F_{4} are not $s u(2)$-invariant. We believe that the list (i)-(iv) exhausts all such situations. Granted this, it can be argued that all $s u(2)$-invariant R-matrices and hence integrable spin chains have already been identified in [1].

We thank B Davies, C Itzykson, P Jarvis, T Kennedy, A Kuniba, M Okado and R Zhang for helpful discussions. This work has been supported by the Australian Research Council.

References

[1] Kennedy T 1992 J. Phys. A: Math. Gen. 252809
[2] Kulish P P and Sklyanin E K 1982 Lecture Notes in Physics 15161
[3] Zamolodchikov A B and Zamolodchikov Al B 1979 Ann. Phys. 120253
[4] McKay W G and Patera J 1981 Tables of Dimensions, Indices, and Branching Rules for Representations of Simple Lie Algebras (New York: Marcel Dekker)
[5] Drinfeld V G 1985 Sov. Math. Dokl. 32254
$[6]$ MacKay N J 1991 J. Phys. A: Math. Gen. 244017
[7] Ogievetsky E and Wiegmann P 1986 Phys. Lett. 168B 360
[8] Ogievetsky E, Reshetikhin N and Wiegmann P 1987 Nucl. Phys. B 28045
[9] Dynkin E B 1957 Am. Math Soc. Trans. Ser. 26111
[10] Batchelor M T and Kuniba A 1991 J. Phys. A: Math. Gen. 242599

[^0]: \dagger References to the original sources in the cases where the R-matrices were discovered earlier in other forms can be found therein.

