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COMMENT 

Comment on 'Solutions of the Yang-Baxter equation for 
isotropic quantum spin chains' 

M T Batchelor and C M Yung 
D e p m e n t  of Mathematics. School of Mathematical Sciences. Australian National University, 
Canberra ACT 0200. Australia 

Received 25 April 1994 

Abstract. We comment on a recent paper by Kennedy (J. Phys. A: Moih Gen. 25 (1992) 
2809) in which a systematic search for integrable s p i n 4  su(;?)-invariant quantum chains for 
S < 6 revealed four spin-S families of integrable chitins along with an additional integrable 
chain af S = 3. We identify these su(2)-invariant chains with known G-invariant R-matrices. 
where G is a simple Lie algebra and give arguments fhat Kennedy's results may well constitute 
the complete classification of integrable sp in4  srr(Z))-invariant chains. 

In a recent paper [I] Kennedy initiated a systematic search for spin4 su(2)-invariant 
quantum chains satisfying Reshetikhin's condition [ 1,2], which is necessary for integrability. 
Four known models for generic S were presented, together with the corresponding R- 
matrices satisfying the Yang-Baxter equation. These four families of quantum chains were 
located in the numerical analysis performed for spins S < 6, together with an extra solution 
at S = 3 for which the related R-matrix was also given. 

In this comment we discuss the relationship of these su(2)-invariant spin chains to 
known 8-invariant R-matrices, where G is a simple Lie algebra. This aspect was briefly 
considered in [l]. Indeed, we will show that the identification made there of one 'family' of 
quantum chains with the so(n)-invariant R-matrices of Zamolodchikov and Zamolodchikov 
[3] is only half correct; the correct identification being that of the spin4 member for S 
integer with the so(2S + 1) R-matrix and the spin4 member for S half-odd-integer with 
the sp(2S + 1) R-matrix. 

We will adopt the root labelling convention of Dynkin [4], and for 8 a simple Lie 
algebra of rank n denote the fundamental weights by A , ,  . . . , A,. Let an be an irreducible 
representation (irrep) of G with highest weight A on the vector space VA. The R-matrix 
k" ' " (u) E End(VA 8 VA) is said to be Ginvariant if 

[ i A ' " ( U ) ,  ??A(G) 8 1 + 1 8 R A ( 8 )  1 = 0. 
For a given pair (8, A) the imposition of such a condition sometimes (but not always 
[5, 61) allows the Yang-Baxter equation for k"'"(u) to be solved. In particular, for any G 
(except E*) and A corresponding to the lowest dimensional irreps the solutions are known 
explicitly. In this language, su(2)-invariance in the sense of [l] correspon$s to requiring 
B = su(2) and A = ~ S A I .  Note that we have leti out the label for G in R","(u), which 
is a usual practice. More seriously, the results of [ l ]  show that, in general, an extra label 
is required to take into account the possibility of more than one solution for given (8,  A). 
Accordingly, we will call the four families of su(Z)-invariant solutions in [ l ]  Ri 
where i E (I. 11, III, IV]. 
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An R-matrix k"+"'u) corresponding to (G,A) has the spectral decomposition 
k"'"(u) = C A E n ~ ~ ( ~ ) P ~ .  where PA is a projector onto the irreducible subspace V, 
occurring in the Clebsch-Gordan decomposition VA 8 VA = ~ B A ~ D V A .  Such an R-matrix 
tums out also to be su(2)-invariant in the sense of [l] if the following condition is satisfied: 

(a) The space VA can be identified with a space V ~ S A ,  on which 4 2 )  is represented 
irreducibly. 

We are unable to give a complete classification of all pairs (E, A) such that this condition 
holds. However, by an examination of the tables of branching rules [4] for simple Lie 
algebras of rank < 8 and representations of dimension < 5000, we have found the following 
solutions: 

(i) (A, = su(n + l ) ,  A I )  for n > 1 ,  
(ii) (Bn = so(2n + l ) ,  A I )  for n > 3, 
(iii) (C, = sp(Zn),  A I )  for n > 2, and 
(iv) (Gz, Az, A d .  

Before proceeding further, we rewrite the su(Z)-invariant R-matrices of [l] in spectral 
form, using the relation P = ( - l ) z s ~ ~ ( - l ~ P ( i )  between the permutation operator 
P ( E  in the notation of [l]) and projection operators Po) = P z j ~ ,  onto su(2)-irreps in 
VuA, @ V2sA, . The results are : 

k,ZSAi,2SAi (U) = (1  - U) c P") + (1  + U )  P(') 
i C M "  i add 

k ; y A ' ( u )  = (1 - U) (1 - (S - ;)U) P(0) + (1 +U) (1 - (S - ;)U) P(') 
i odd 

+ ( 1  + U) (1 - (S + ;)U) c P(') (S half odd integer) (3) 
i even #O 

Here, it is understood that Ci even is short for etc. The R-matrices labelled I. 
11, I11 and IV correspond, respectively, to the solutions (4), (6), (9) and (10) in [l]. We 
have divided the type II solutions into IIa and IIb for reasons which will soon be clear. The 
extra solution for S = 3 ((13) in [l]) can be written as 

k ~ " 6 " ' ( ~ ) = ( 1 + 6 ~ ) ( 1  +u)( l  - ~ U ) P ( ~ ' + ( I  - 6 u ) ( l - ~ ) ( l + $ u ) P ( ~ '  
+ ( I  - & ) ( I  -U)(] - $U) (P(') + P(4)  + P'") 
+(1+6u)(l -u)(l - $ u ) ( P ( I ) + P ( ' ) ) .  (6) 

The solutions of the Yang-Baxter equation corresponding to the pairs (E, A) written out 
above which satisfy condition (a) can be found in 17, 81 as scattering matrices in spectral 

(i 
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form, which can be converted to regular R-matrices (satisfying k"'"(0) = l ) , t  For the 
su(k) and s0(2k+ 1) series, we write down the results only for generic k:  for the special low- 
dimensional cases su(2), so(3), and so(5), the corresponding R-matrices have similar forms 
to the generic rank cases but the labelling of the invariant subspaces is slightly different. 
We now examine each case (i)-(iv) more closely. In the tables of [4] only branching rules 
corresponding to maximal embeddings [9] are given: therefore in aniving at the list (i)-(iv) 
we have examined all chains of maximal embeddings G 3 . . . 3 A l .  Consideration of such 
chains is also needed in general to relate the corresponding R-matrices to those in (1)-(5). 

In case (i) the R-matrices are given by 

(U) = (l-U)PA,+(l+U)pZA,. (7) R A i . A >  

The required embeddings of A I  in A, are A 2  3 BX 3 A I  and A 2 - l  3 Ck 2 A I ,  except 
possibly when an exceptional algebra 'gets in the way', e.g. A6 3 B3 3 Gz 3 A,.  In 
this latter case the relevant branching rules are A1 .1 (3), A2 J. (1) + (3) + (5). and 
2A1 J. (0) + (2) + (4) + (6). where su(2)-irreps are labelled by their spin. Hence, the 
corresponding R-matrix can be identified with the S = 3 case of (1). Likewise, examination 
of the other cases will show that the R-matrices (7) are identified with those of (1). Of 
course, one can arrive at the same conclusion by noting that both series of R-matrices can 
be expressed in terms of the permutation operator P. The approach taken here shows its 
utility when we consider the other Lie algebras. 

R"I."I(U) = (I  + U )  (1 + (n  - $)U) P ~ A ,  + (1 +U) (1 - (n - 4 ) ~ )  PA, 
In case (ii) the R-matrices are 

+(I - U) (1 - (n - $)U) Po. (8) 

The required embedding is generically B,, 3 A l .  For example, we have 84 3 A I ,  with the 
relevant branchingrules A1 .1 (4), A2 .1 (1)+(3)+(5)+(7), and2121 J. (2)+(4)+(6)+(8). 
The corresponding R-matrix is identified with the S = 4 member of (2). Likewise, all the 
other so(2n + 1)-invariant R-matrices (8) can be identified with members of the series (2). 

l i"l ."~(u)  = (1 + U) (1 + (n + I)U) PZA, + (1 + U )  (1 - (n + 1 ) ~ )  PA? 

In case (iii) the R-matrices are 

+(1 - U )  (1 + (n  + 1)u) PO. (9) 
The required embedding is generically C, 3 A,. For example, we have C, 3 A I ,  with 
the relevant branching rules A1 J. (5/2), A2 .1 (2) + (4), and 2A1 .1 (1) + (3) + (5).  The 
corresponding R-matrix is identified with the S = 5/2 member of (3). Likewise, all the 
other sp(Zn)-invariant R-matrices (9) can be identified with members of (3). This corrects 
a mis-identification in [l]. 

In case (iv) the R-matrix is 

k"'~A2(~) = (1 -6u)(l - u)(l - $ u ) P ~ A ~  + (1 + 6 ~ ) ( l -  u)(l - ~ u ) P A ,  

+(1+6u)( l+u)( l  - ; u ) P o + ( l  - ~ u ) ( ~ - u ) ( ~ + ~ u ) P A , .  (10) 
The maximal embedding is G2 3 A I  and the relevant branching rules are A2 .1 (3). 
2112 .1 (2) + (4) + (6) and A1 .1 (1) + (5).  Therefore the Grinvariant R-matrix (10) is 
identified with the extra S = 3 solution (6). 

To summarise, we have the following identification of su(2)-invariant spin3 R-matrices 
with R-matrices invariant under a larger algebra and acting on tensor products of lowest 

t References to the original sources in the cases where the R-matrices were discovered earlier in other forms can 
be found therein. 
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dimensional irreps: 
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k;SAdSA, [ su(2) ] = k"I," [ su(2S + 1) ] 

~YSA' [ su(2) 1 = i A ~ , A ~  s o ( 2 ~  + 1) 1 
Rub "2Sh12SAl [ su(2) ] = kA1,A1 [ sp(2S + 1) ] 

,YA' [ su(2) ] = k A 2 , A l  I Gz 1 

(S half integer) 
( S  integer) 

(S half odd integer) 

(S = 3). 

The R-matrices k ~ ~ A 1 * z s A ' [ s u ( 2 ) ]  are already in the 'proper' Lie algebraic setting- 
corresponding to the hivial embedding of A] in itself. Finally, kvL*2sA1 [su(2)] is not 
rational in U ,  unlike the others under consideration, and is in a class of its own-king 
related to the Temperley-Lieb algebra. We have thus 'accounted for' all the R-matrices in 
U]. 

We conclude with a few remarks on whether there are su(2)-invariant R-matrices beyond 
those in [I]. Firstly, we note that it is possible to consmct R-matrices by way of the 
Temperley-Lieb algebra starting from a pair (G, A) for which VA @ VA is multiplicity-free 
and contains the h+vial representation V, [lo]. However, if such an R-matrix turns out to be 
su(2)-invariant-i.e. condition (a) is satisfied-then it will necessarily be equivalent to (5). 
Secondly, an inspection of the tables of [4] will convince the reader that condition (a) holds 
very rarely. In particular, the R-matrices associated with the fundamental representations 
of D., E6, E7 and F4 are not su(2)-invariant. We believe that the list (ixiv) exhausts all 
such situations. Granted this, it can be argued that all su(2)-invariant R-matrices and hence 
integrable spin chains have already been identified in [I]. 

We thank B Davies, C Itzykson, P Jawis, T Kennedy, A Kuniba, M Okado and R Zhang 
for helpful discussions. This work has been supported by the Australian Research Council. 

References 

[ I ]  Kennedy T 1992 J. Phys. A: Math Gen. 25 2809 
121 Kulish P P and Sklyanin E K 1902 Lecture Notes in Physics 151 61 
[3 ]  Zamolodchikov A B and Zamolcdchikov AI B 1979 Ann. Pkys. U0 253 
[4] McKay W G and Patera I 1901 Tobles of Dimemiom, Indicts, and Branching Ruk-s for Representarions of 

[5] Drinfeld V G 1985 Sov. Math. Dokl. 32 254 
[6] MacKay N 1 1991 J,  Phys. A: Math. Gen. 24 4017 
[7] Ogievetsky E and Wiegmann P 1986 Phys. Left, 168B 360 
[SI Ogievetsky E, Reshetikhin N and Wiegmann P 1987 NUCL Phys. B 280 45 
[9] Dynkin E B 1957 Am. Mafh Soc. T r m .  Se,. 2 6 I I I 

Simple Lie Algebras (New York Marcel Dekker) 

[lo] Balchelor M T and Kuniba A 1991 J. Phys. A: Math. Gen. 24 2599 


