

Home Search Collections Journals About Contact us My IOPscience

Comment on 'Solutions of the Yang-Baxter equation for isotropic quantum spin chains'

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1994 J. Phys. A: Math. Gen. 27 5033 (http://iopscience.iop.org/0305-4470/27/14/028)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.68 The article was downloaded on 01/06/2010 at 21:36

Please note that terms and conditions apply.

COMMENT

Comment on 'Solutions of the Yang-Baxter equation for isotropic quantum spin chains'

M T Batchelor and C M Yung

Department of Mathematics, School of Mathematical Sciences, Australian National University, Canberra ACT 0200, Australia

Received 25 April 1994

Abstract. We comment on a recent paper by Kennedy (J. Phys. A: Math. Gen. 25 (1992) 2809) in which a systematic search for integrable spin-S su(2)-invariant quantum chains for $S \leq 6$ revealed four spin-S families of integrable chains along with an additional integrable chain at S = 3. We identify these su(2)-invariant chains with known \mathcal{G} -invariant *R*-matrices, where \mathcal{G} is a simple Lie algebra, and give arguments that Kennedy's results may well constitute the complete classification of integrable spin-S su(2)-invariant chains.

In a recent paper [1] Kennedy initiated a systematic search for spin-S su(2)-invariant quantum chains satisfying Reshetikhin's condition [1, 2], which is necessary for integrability. Four known models for generic S were presented, together with the corresponding R-matrices satisfying the Yang-Baxter equation. These four families of quantum chains were located in the numerical analysis performed for spins $S \le 6$, together with an extra solution at S = 3 for which the related R-matrix was also given.

In this comment we discuss the relationship of these su(2)-invariant spin chains to known \mathcal{G} -invariant *R*-matrices, where \mathcal{G} is a simple Lie algebra. This aspect was briefly considered in [1]. Indeed, we will show that the identification made there of one 'family' of quantum chains with the so(n)-invariant *R*-matrices of Zamolodchikov and Zamolodchikov [3] is only half correct; the correct identification being that of the spin-S member for S integer with the so(2S + 1) *R*-matrix and the spin-S member for S half-odd-integer with the sp(2S + 1) *R*-matrix.

We will adopt the root labelling convention of Dynkin [4], and for \mathcal{G} a simple Lie algebra of rank *n* denote the fundamental weights by $\Lambda_1, \ldots, \Lambda_n$. Let π_{Λ} be an irreducible representation (irrep) of \mathcal{G} with highest weight Λ on the vector space V_{Λ} . The *R*-matrix $\check{R}^{\Lambda,\Lambda}(u) \in \text{End}(V_{\Lambda} \otimes V_{\Lambda})$ is said to be \mathcal{G} -invariant if

$$[\mathring{R}^{\Lambda,\Lambda}(u), \ \pi_{\Lambda}(\mathcal{G}) \otimes 1 + 1 \otimes \pi_{\Lambda}(\mathcal{G})] = 0.$$

For a given pair (\mathcal{G}, Λ) the imposition of such a condition sometimes (but not always [5, 6]) allows the Yang-Baxter equation for $\check{R}^{\Lambda,\Lambda}(u)$ to be solved. In particular, for any \mathcal{G} (except E_8) and Λ corresponding to the lowest dimensional irreps the solutions are known explicitly. In this language, su(2)-invariance in the sense of [1] corresponds to requiring $\mathcal{G} = su(2)$ and $\Lambda = 2S\Lambda_1$. Note that we have left out the label for \mathcal{G} in $\check{R}^{\Lambda,\Lambda}(u)$, which is a usual practice. More seriously, the results of [1] show that, in general, an extra label is required to take into account the possibility of more than one solution for given (\mathcal{G}, Λ) . Accordingly, we will call the four families of su(2)-invariant solutions in [1] $\check{R}_i^{2S\Lambda_1,2S\Lambda_1}$ where $i \in \{I, II, III, IV\}$.

An *R*-matrix $\check{R}^{\Lambda,\Lambda}(u)$ corresponding to (\mathcal{G},Λ) has the spectral decomposition $\check{R}^{\Lambda,\Lambda}(u) = \sum_{\lambda \in \mathcal{D}} c_{\lambda}(u) P_{\lambda}$, where P_{λ} is a projector onto the irreducible subspace V_{λ} occurring in the Clebsch-Gordan decomposition $V_{\Lambda} \otimes V_{\Lambda} = \bigoplus_{\lambda \in \mathcal{D}} V_{\lambda}$. Such an *R*-matrix turns out also to be su(2)-invariant in the sense of [1] if the following condition is satisfied:

(a) The space V_{Λ} can be identified with a space $V_{2S\Lambda_1}$ on which su(2) is represented *irreducibly*.

We are unable to give a complete classification of all pairs (\mathcal{G}, Λ) such that this condition holds. However, by an examination of the tables of branching rules [4] for simple Lie algebras of rank ≤ 8 and representations of dimension < 5000, we have found the following solutions:

(i) $(A_n = su(n+1), \Lambda_1)$ for $n \ge 1$, (ii) $(B_n = so(2n+1), \Lambda_1)$ for $n \ge 3$, (iii) $(C_n = sp(2n), \Lambda_1)$ for $n \ge 2$, and (iv) $(G_2, \Lambda_2, \Lambda_2)$.

Before proceeding further, we rewrite the su(2)-invariant *R*-matrices of [1] in spectral form, using the relation $\mathcal{P} = (-1)^{2S} \sum_{i=0}^{2S} (-1)^i P^{(i)}$ between the permutation operator \mathcal{P} (*E* in the notation of [1]) and projection operators $P^{(j)} \equiv P_{2j\Lambda_1}$ onto su(2)-irreps in $V_{2S\Lambda_1} \otimes V_{2S\Lambda_1}$. The results are :

$$\check{R}_{I}^{2S\Lambda_{1},2S\Lambda_{1}}(u) = (1-u) \sum_{i \text{ even}} P^{(i)} + (1+u) \sum_{i \text{ odd}} P^{(i)}$$

$$\check{R}_{IIa}^{2S\Lambda_{1},2S\Lambda_{1}}(u) = (1-u) \left(1 - (S - \frac{1}{2})u\right) P^{(0)} + (1+u) \left(1 - (S - \frac{1}{2})u\right) \sum_{i \text{ odd}} P^{(i)}$$

$$+ (1+u) \left(1 + (S - \frac{1}{2})u\right) \sum_{i \text{ even } \neq 0} P^{(i)} \quad (S \text{ integer}) \quad (2)$$

 $\check{R}_{\mathrm{IIb}}^{2S\Lambda_1,2S\Lambda_1}(u) = (1-u)\left(1 + (S+\frac{3}{2})u\right)P^{(0)} + (1+u)\left(1 + (S+\frac{3}{2})u\right)\sum_{i \text{ odd}}P^{(i)}$

$$+ (1+u)\left(1 - (S + \frac{3}{2})u\right) \sum_{i \text{ even } \neq 0} P^{(i)} \qquad (S \text{ half odd integer}) \tag{3}$$

$$\check{R}_{\mathrm{III}}^{2S\Lambda_1,2S\Lambda_1}(u) = \sum_{k=0}^{2S} \left(\prod_{j=1}^k (j-u) \prod_{j=k+1}^{2S} (j+u) \right) P^{(k)}$$
(4)

$$\check{R}_{\rm IV}^{2S\Lambda_1,2S\Lambda_1}(u) = 1 + \frac{a - ae^u}{e^u - a^2} (2S + 1) P^{(0)} \qquad a + \frac{1}{a} = 2S + 1 \qquad (S \ge 1).$$
(5)

Here, it is understood that $\sum_{i \text{ even}}$ is short for $\sum_{i=0}^{2S} (i \text{ even})$ etc. The *R*-matrices labelled I, II, III and IV correspond, respectively, to the solutions (4), (6), (9) and (10) in [1]. We have divided the type II solutions into IIa and IIb for reasons which will soon be clear. The extra solution for S = 3 ((13) in [1]) can be written as

$$\check{R}_{V}^{\delta\Lambda_{1},\delta\Lambda_{1}}(u) = (1+6u)(1+u)(1-\frac{3}{2}u)P^{(0)} + (1-6u)(1-u)(1+\frac{3}{2}u)P^{(3)}
+ (1-6u)(1-u)(1-\frac{3}{2}u)(P^{(2)}+P^{(4)}+P^{(6)})
+ (1+6u)(1-u)(1-\frac{3}{2}u)(P^{(1)}+P^{(5)}).$$
(6)

The solutions of the Yang-Baxter equation corresponding to the pairs (\mathcal{G}, Λ) written out above which satisfy condition (a) can be found in [7, 8] as scattering matrices in spectral form, which can be converted to regular *R*-matrices (satisfying $\check{R}^{\Lambda,\Lambda}(0) = 1$).[†] For the su(k) and so(2k+1) series, we write down the results only for generic k; for the special lowdimensional cases su(2), so(3), and so(5), the corresponding *R*-matrices have similar forms to the generic rank cases but the labelling of the invariant subspaces is slightly different. We now examine each case (i)-(iv) more closely. In the tables of [4] only branching rules corresponding to maximal embeddings [9] are given; therefore in arriving at the list (i)-(iv) we have examined all chains of maximal embeddings $\mathcal{G} \supset \cdots \supset A_1$. Consideration of such chains is also needed in general to relate the corresponding *R*-matrices to those in (1)-(5).

In case (i) the R-matrices are given by

$$\check{R}^{\Lambda_1,\Lambda_1}(u) = (1-u)P_{\Lambda_2} + (1+u)P_{2\Lambda_1}.$$
(7)

The required embeddings of A_1 in A_n are $A_{2k} \supset B_k \supset A_1$ and $A_{2k-1} \supset C_k \supset A_1$, except possibly when an exceptional algebra 'gets in the way', e.g. $A_6 \supset B_3 \supset G_2 \supset A_1$. In this latter case the relevant branching rules are $\Lambda_1 \downarrow (3)$, $\Lambda_2 \downarrow (1) + (3) + (5)$, and $2\Lambda_1 \downarrow (0) + (2) + (4) + (6)$, where su(2)-irreps are labelled by their spin. Hence, the corresponding *R*-matrix can be identified with the S = 3 case of (1). Likewise, examination of the other cases will show that the *R*-matrices (7) are identified with those of (1). Of course, one can arrive at the same conclusion by noting that both series of *R*-matrices can be expressed in terms of the permutation operator \mathcal{P} . The approach taken here shows its utility when we consider the other Lie algebras.

In case (ii) the R-matrices are

$$\check{R}^{\Lambda_1,\Lambda_1}(u) = (1+u) \left(1 + (n-\frac{1}{2})u \right) P_{2\Lambda_1} + (1+u) \left(1 - (n-\frac{1}{2})u \right) P_{\Lambda_2}
+ (1-u) \left(1 - (n-\frac{1}{2})u \right) P_0.$$
(8)

The required embedding is generically $B_n \supset A_1$. For example, we have $B_4 \supset A_1$, with the relevant branching rules $\Lambda_1 \downarrow (4)$, $\Lambda_2 \downarrow (1)+(3)+(5)+(7)$, and $2\Lambda_1 \downarrow (2)+(4)+(6)+(8)$. The corresponding *R*-matrix is identified with the S = 4 member of (2). Likewise, all the other so(2n + 1)-invariant *R*-matrices (8) can be identified with members of the series (2).

In case (iii) the R-matrices are

$$\check{R}^{\Lambda_1,\Lambda_1}(u) = (1+u) (1+(n+1)u) P_{2\Lambda_1} + (1+u) (1-(n+1)u) P_{\Lambda_2} + (1-u) (1+(n+1)u) P_0.$$
(9)

The required embedding is generically $C_n \supset A_1$. For example, we have $C_3 \supset A_1$, with the relevant branching rules $\Lambda_1 \downarrow (5/2)$, $\Lambda_2 \downarrow (2) + (4)$, and $2\Lambda_1 \downarrow (1) + (3) + (5)$. The corresponding *R*-matrix is identified with the S = 5/2 member of (3). Likewise, all the other sp(2n)-invariant *R*-matrices (9) can be identified with members of (3). This corrects a mis-identification in [1].

In case (iv) the *R*-matrix is

$$\check{R}^{\Lambda_2,\Lambda_2}(u) = (1-6u)(1-u)(1-\frac{3}{2}u)P_{2\Lambda_2} + (1+6u)(1-u)(1-\frac{3}{2}u)P_{\Lambda_1} + (1+6u)(1+u)(1-\frac{3}{2}u)P_0 + (1-6u)(1-u)(1+\frac{3}{2}u)P_{\Lambda_2}.$$
(10)

The maximal embedding is $G_2 \supset A_1$ and the relevant branching rules are $\Lambda_2 \downarrow (3)$, $2\Lambda_2 \downarrow (2) + (4) + (6)$ and $\Lambda_1 \downarrow (1) + (5)$. Therefore the G_2 -invariant *R*-matrix (10) is identified with the extra S = 3 solution (6).

To summarise, we have the following identification of su(2)-invariant spin-S R-matrices with R-matrices invariant under a larger algebra and acting on tensor products of lowest

[†] References to the original sources in the cases where the *R*-matrices were discovered earlier in other forms can be found therein.

dimensional irreps:

$$\tilde{R}_{1}^{2S\Lambda_{1},2S\Lambda_{1}} [su(2)] = \tilde{R}^{\Lambda_{1},\Lambda_{1}} [su(2S+1)]$$
(S half integer)

$$\tilde{R}_{IIa}^{2S\Lambda_{1},2S\Lambda_{1}} [su(2)] = \tilde{R}^{\Lambda_{1},\Lambda_{1}} [so(2S+1)]$$
(S integer)

$$\tilde{R}_{IIb}^{2S\Lambda_{1},2S\Lambda_{1}} [su(2)] = \tilde{R}^{\Lambda_{1},\Lambda_{1}} [sp(2S+1)]$$
(S half odd integer)

$$\tilde{R}_{V}^{6\Lambda_{1},6\Lambda_{1}} [su(2)] = \tilde{R}^{\Lambda_{2},\Lambda_{2}} [G_{2}]$$
(S = 3).

The *R*-matrices $\tilde{R}_{III}^{2S\Lambda_1,2S\Lambda_1}[su(2)]$ are already in the 'proper' Lie algebraic setting corresponding to the trivial embedding of A_1 in itself. Finally, $\tilde{R}_{IV}^{2S\Lambda_1,2S\Lambda_1}[su(2)]$ is not rational in *u*, unlike the others under consideration, and is in a class of its own—being related to the Temperley–Lieb algebra. We have thus 'accounted for' all the *R*-matrices in [1].

We conclude with a few remarks on whether there are su(2)-invariant *R*-matrices beyond those in [1]. Firstly, we note that it is possible to construct *R*-matrices by way of the Temperley-Lieb algebra starting from a pair (\mathcal{G}, Λ) for which $V_{\Lambda} \otimes V_{\Lambda}$ is multiplicity-free and contains the trivial representation V_0 [10]. However, if such an *R*-matrix turns out to be su(2)-invariant—i.e. condition (a) is satisfied—then it will necessarily be equivalent to (5). Secondly, an inspection of the tables of [4] will convince the reader that condition (a) holds very rarely. In particular, the *R*-matrices associated with the fundamental representations of D_n , E_6 , E_7 and F_4 are not su(2)-invariant. We believe that the list (i)—(iv) exhausts all such situations. Granted this, it can be argued that all su(2)-invariant *R*-matrices and hence integrable spin chains have already been identified in [1].

We thank B Davies, C Itzykson, P Jarvis, T Kennedy, A Kuniba, M Okado and R Zhang for helpful discussions. This work has been supported by the Australian Research Council.

References

- [1] Kennedy T 1992 J. Phys. A: Math. Gen. 25 2809
- [2] Kulish P P and Sklyanin E K 1982 Lecture Notes in Physics 151 61
- [3] Zamolodchikov A B and Zamolodchikov Al B 1979 Ann. Phys. 120 253
- [4] McKay W G and Patera J 1981 Tables of Dimensions, Indices, and Branching Rules for Representations of Simple Lie Algebras (New York: Marcel Dekker)
- [5] Drinfeld V G 1985 Sov. Math. Dokl. 32 254
- [6] MacKay N J 1991 J. Phys. A: Math. Gen. 24 4017
- [7] Ogievetsky E and Wiegmann P 1986 Phys. Lett. 168B 360
- [8] Ogievetsky E, Reshetikhin N and Wiegmann P 1987 Nucl. Phys. B 280 45
- [9] Dynkin E B 1957 Am. Math. Soc. Trans. Ser. 2 6 111
- [10] Batchelor M T and Kuniba A 1991 J. Phys. A: Math. Gen. 24 2599